

# RADIATION IN LOCALLY ADVANCED LUNG CANCER

Dr. Anil Tibdewal Associate Professor aniltibdewal@gmail.com





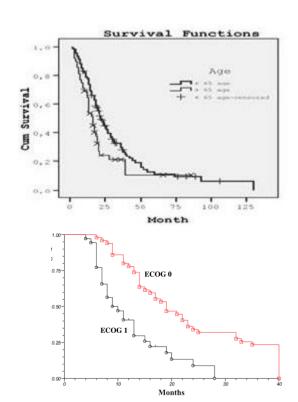
## Flow of my Talk

- LALC Definition and Selection of patients
- Time, dose and fractionations
- Radiation Volumes
- OAR Constraints
- Outcome and complications





## What is Locally Advanced Lung Cancer

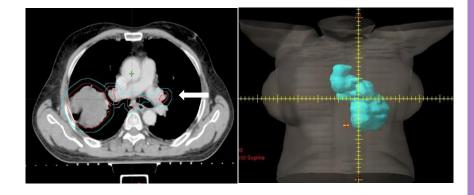

|     | No   | N1   | N <sub>2</sub> | N <sub>3</sub> |
|-----|------|------|----------------|----------------|
| T1  | IA   | IIB  | IIIA           | IIIB           |
| T2a | IB   | IIB  | IIIA           | IIIB           |
| T2b | IIA  | IIB  | IIIA           | IIIB           |
| Т3  | IIB  | IIIA | IIIB           | IIIC           |
| T4  | IIIA | IIIA | IIIB           | IIIC           |
| М1а | IVA  | IVA  | IVA            | IVA            |
| M1b | IVA  | IVA  | IVA            | IVA            |
| M1c | IVB  | IVB  | IVB            | IVB            |





#### Patient factors

- Age No cut-off
- Performance status (KPS/ECOG) 70-100/0-2
- PFT parameters FEV1>50% predicted or ≥1.0L and DLCO >40%
- Comorbidities COPD, DM, HT
- Interstitial lung disease








#### Tumor factors

- T stage T1-T4 (except nodules in different lobe)
- N3 Crossing midline
- Size/PTV Volume > 700cc –bad prognosis
- Location and Laterality
- Collapse: Major airway involved







#### Treatment factors

Motion management – Very essential

Linear accelerator – Must (No Cobalt)

Planning System – tissue heterogeneity corrections

Pulmonary rehabilitation

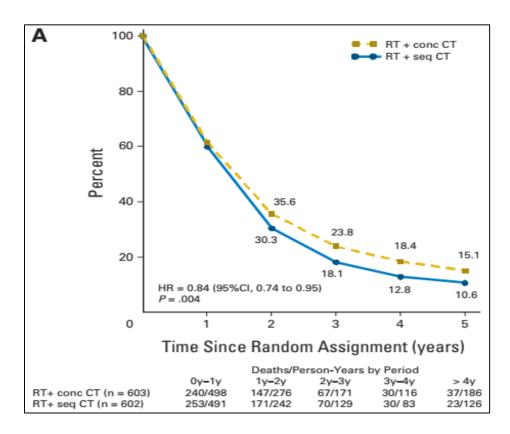




### Radiation Alone or Combined with Chemo

#### **Two Year Overall Survival**

| Trial      | Pts | RT  | CT>RT |
|------------|-----|-----|-------|
| Finnish    | 238 | 17% | 19%   |
| NCCTG      | 107 | 16% | 21%   |
| CALGB      | 155 | 13% | 26%   |
| IGR-French | 331 | 14% | 21%   |


| First author     |                 | Statistics for each study |                |            |         |     |                          | Relative |          |          |          |     |        |
|------------------|-----------------|---------------------------|----------------|------------|---------|-----|--------------------------|----------|----------|----------|----------|-----|--------|
| (year)           | Hazard<br>ratio | Lower<br>limit            | Upper<br>limit | Z-Value    | P-Valu  | e   | Hazard ratio with 95% CI |          |          |          | weight   |     |        |
| Atagi (2012)     | 0.68            | 0.47                      | 0.98           | -2.06      | 0.040   | 1   | 1                        | 1        | н        | 1        | - 1      | -1  | 16.432 |
| Nawrocki (2010)  | 0.62            | 0.40                      | 0.96           | -2.17      | 0.030   | 1   | - 1                      |          | _        |          | - 1      | - 1 | 11.858 |
| Huber (2006)     | 0.76            | 0.56                      | 1.04           | -1.71      | 0.087   | 1   | - 1                      | -        | H        |          | - 1      | - 1 | 22.454 |
| Atagi (2005)     | 0.68            | 0.39                      | 1.18           | -1.37      | 0.172   | 1   | - 1                      |          | H        | 9        | - 1      | - 1 | 7.239  |
| Dillman (1996)   | 0.76            | 0.60                      | 0.96           | -2.34      | 0.019   | 1   | - 1                      | - 1      | -        |          | - 1      | - 1 | 42.017 |
| Pooled effect    | 0.72            | 0.62                      | 0.84           | -4.28      | < 0.001 | 1   | - 1                      | _   ∢    | <b>\</b> | ı        |          | - 1 |        |
|                  |                 |                           |                |            |         | 0.1 | 0.2                      | 0.5      | 1        | 2        | 5        | 10  |        |
| Heterogeneity to | est Q=0.9       | 17, df = 4                | , P=0.979      | , I-square | = 0%    | F   | avor CT+                 | RT Group |          | Favor RT | only Gro | up  |        |

Hung et al. Medicine (2019) 98:27

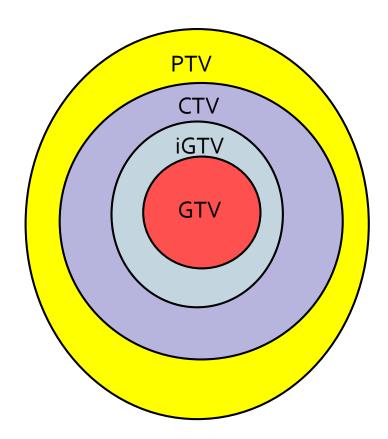




## Timing of Radiation



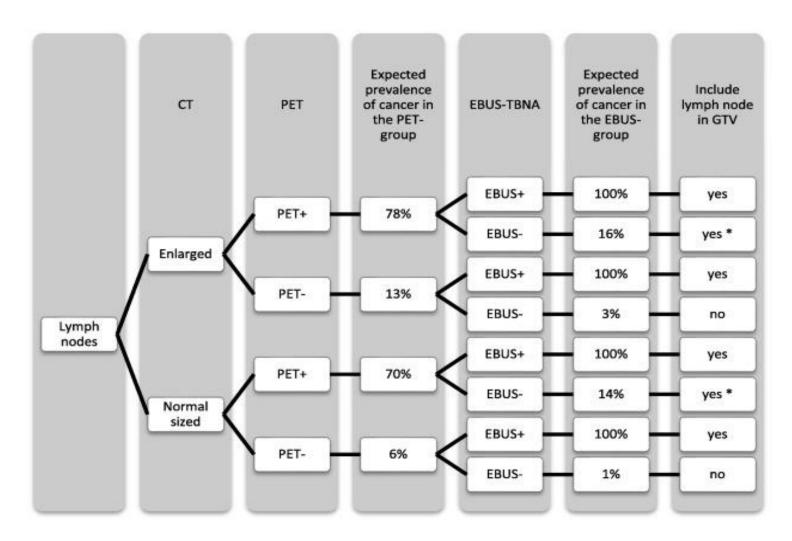



Absolute benefit of 5.7% (from 18.1% to 23.8%) at 3 years and 4.5% at 5 years





#### **Radiation Volumes**

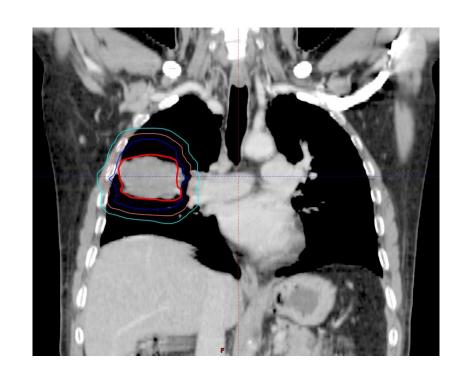

- GTV Primary + Nodes (>1cm or SUV>3)
- No ENI
- ITV (iGTV) GTV + Resp motion
- CTV ITV + 0.7 cm
- PTV CTV + 0.5 cm
- Prescription Planning target volume

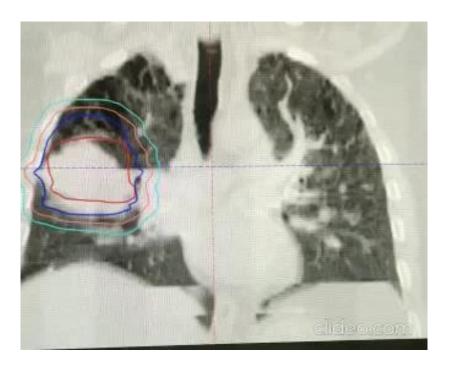






#### Radiation Volumes - Nodal



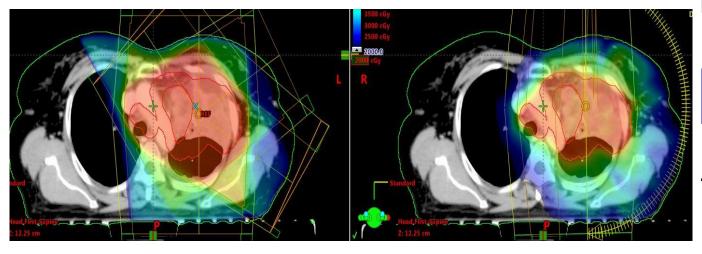


ENI is not recommended





## Motion Management





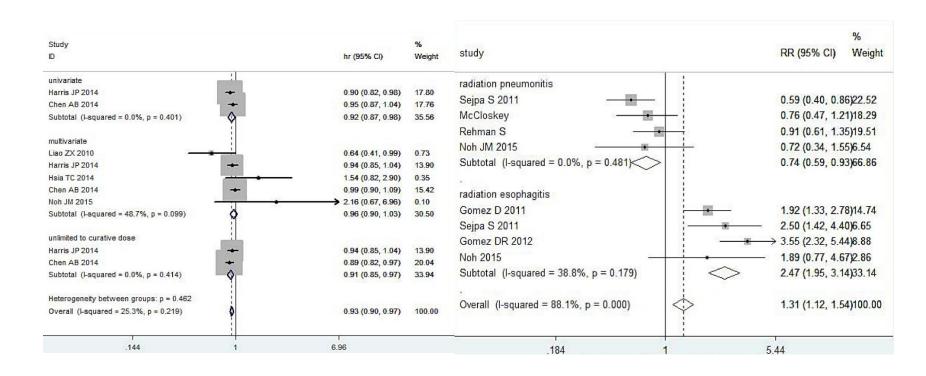





## Techniques – 3D/ IMRT

- IMRT is more conformal and reduces normal tissue doses better than 3D CRT
- In RTOG 0617 inspite of larger volumes and more IIIB disease,
   IMRT reduces the risk of pneumonitis
- No difference in overall survival




| Outcome          | 3D-CRT | IMRT, | P value |
|------------------|--------|-------|---------|
| 2-year OS        | 49.4   | 53.2  | 0.597   |
| 2-year PFS       | 27.0   | 25.2  | 0.595   |
| Pneumonitis      | 7.9%   | 3.5%  | 0.03    |
| Heart V40<br>(%) | 11.4   | 6.8   | 0.003   |

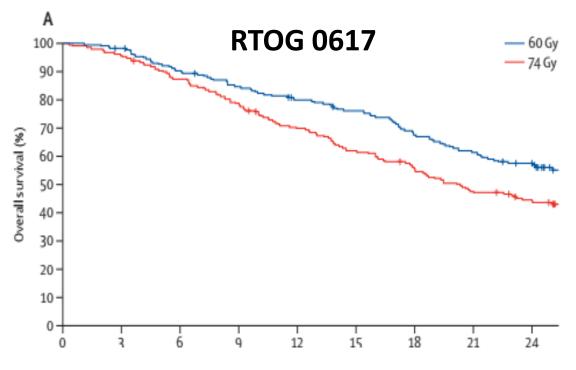
3D-CRT IMRT





## Meta Analysis of 3DCRT Vs IMRT



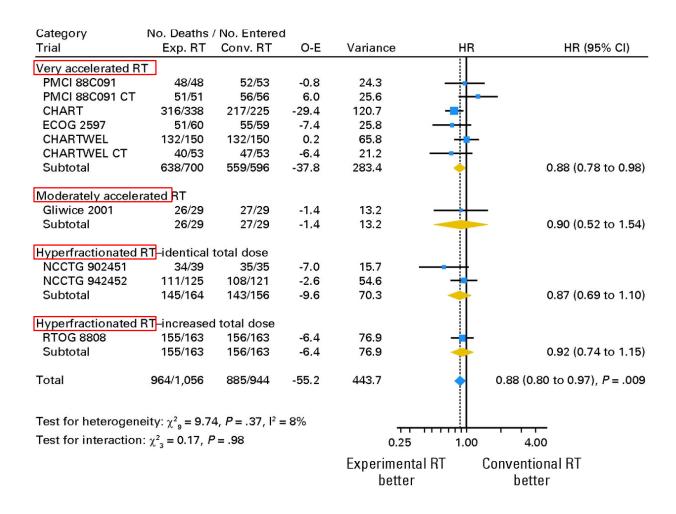

No difference in OS, significantly reduced the risk of pneumonitis





### **Dose and Fractionation**

- Standard 60-66 Gy in 30-33 fractions
- No proven role of uniform dose escalation




| Outcome  | 60 Gy | 74 Gy | P value |
|----------|-------|-------|---------|
| Med OS   | 28.7  | 20.3  | 0.007   |
| 5 yr OS  | 32.1% | 23%   | 0.004   |
| 5 yr PFS | 18.3% | 13%   | 0.055   |





#### Accelerated fractionation schedules



- 5-yr absolute benefit in OS of 2.5%
- Esophagitis rate significantly higher with hyper fractionation





## Outcome of CTRT

| Trial (CTRT Arm) | Median OS (months) | 3 year OS |
|------------------|--------------------|-----------|
| INT 0139 (2009)  | 22.2               | 30%       |
| RTOG 0617 (2015) | 28.7               | 32% (5yr) |
| Proclaim (2016)  | 25                 | 37%       |
| PACIFIC (2020)   | 29.1               | 50% (4yr) |





### Patterns of failure

Predominant site of failure – local and distant

#### **RTOG 9410**

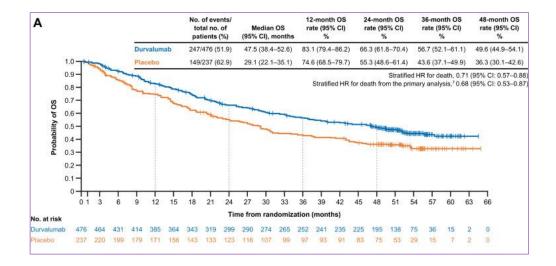
- Arm 1 Sequential
- Arm 2 Concurrent 60 Gy

Table 3. Patterns of failure\*

• Arm 3 – Concurrent 69.2 Gy

|                                     | No. (%)            |                    |                    |  |  |
|-------------------------------------|--------------------|--------------------|--------------------|--|--|
| Component of first failure          | Arm 1<br>(n = 195) | Arm 2<br>(n = 195) | Arm 3<br>(n = 187) |  |  |
| Primary tumor                       | 65 (33)            | 56 (29)            | 47 (25)            |  |  |
| Thoracic lymph nodes (infield)      | 34 (17)            | 24 (12)            | 18 (10)            |  |  |
| Thoracic lymph nodes (out of field) | 4 (2)              | 8 (4)              | 3 (2)              |  |  |
| Brain metastases                    | 24 (12)            | 28 (14)            | 24 (13)            |  |  |
| Other metastases                    | 65 (33)            | 64 (33)            | 60 (32)            |  |  |
| Infield only                        | 59 (30)            | 49 (25)            | 38 (20)            |  |  |
| Out of field only                   | 67 (34)            | 73 (37)            | 69 (37)            |  |  |
| Both infield and out of field       | 22 (11)            | 20 (10)            | 16 (9)             |  |  |

| PROCLAIM         | Arm A   |      | Arm B            |      |
|------------------|---------|------|------------------|------|
| Relapse Site     | Pts No. | %    | Pts No.          | %    |
| Within RT field  | 60      | 37.3 | 80               | 45.8 |
| Outside RT field | 34      | 20.5 | 31               | 16.3 |
| Distant Relapse  | 83      | 50   | 87               | 45.8 |
| Brain Mets       | 31      | 18.7 | 37 RIAL HOSPITAL | 19.5 |


## Immunotherapy with CTRT

PACIFIC Trial - Consolidation Durvalumab improved 5 yr OS

Concurrent Durvalumab (Ongoing)

Neo-adjuvant Durvalumab (Ongoing)

Adjuvant Pembrolizumab (Ongoing)





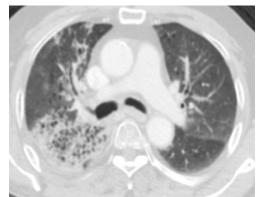


## Neoadjuvant Chemo-Radiation

| Study          | Arms              | Median OS<br>(months) | OS        | Median PFS       | Downstaging |
|----------------|-------------------|-----------------------|-----------|------------------|-------------|
| RTOG 8901      | NACT-Sx           | 19.4                  | 70% (1yr) |                  |             |
| K100 8901      | NACT-CTRT         | 17.4                  | 66% (1yr) |                  |             |
| INT 0139       | CTRT (45Gy)-Sx    | 23.6                  | 27% (5yr) | 12.8 (5yr – 22%) |             |
|                | CTRT (61Gy)       | 22.2                  | 20% (5yr) | 10.5 (5yr – 12%) |             |
| ESPATAUE       | NACT-CTRT(bid)-Sx | -                     | 44% (5yr) | (5yr – 35%)      | R0-81%      |
| (2015 JCO)     | NACT-CTRT         | -                     | 40% (5yr) | (5yr – 32%)      |             |
| Pless et al    | NACT-RT-Sx        | 37.1                  |           | 12.8             | R0-91%      |
| (2015 Lancet)  | NACT-Sx           | 26.2                  |           | 11.6             | R0-81%      |
| Katakami et al | CTRT(40Gy)-Sx     | 39.6                  | 52% (3yr) | 12.4 (3yr – 34%) | 40%         |
| (2012 Cancer)  | NACT-Sx           | 29.9                  | 39% (3yr) | 9.7 (3yr – 18%)  | 21%         |
| Thomas et al   | $NACT-Sx \pm RT$  | 33                    | 31% (5yr) | 21 (5yr – 25%)   | 20%         |
| (2008 Lancet)  | NACT-CTRT(bid)-Sx | 32.4                  | 39% (5yr) | 20 (5yr – 30%)   | 60%         |

## Downstaging - Significance

|                              | Yes               | No        |
|------------------------------|-------------------|-----------|
| INT 0139                     | 34.4 months (pN0) |           |
| Katakami et al (2012 Cancer) | 72 months         | 31 months |
| Thomas et al (2008 Lancet)   | 50 months         | 20 months |

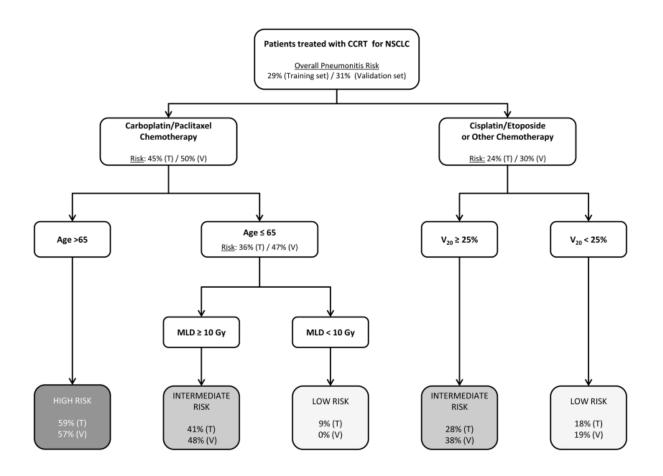





## **Complications of CRT**

- Radiation Pneumonitis ≥ Gr 3 15-20 %
- Oesophagitis length of oesophagus and Etoposide
- Radiation Induced Heart Disease RTOG 0617 attributed poorer OS





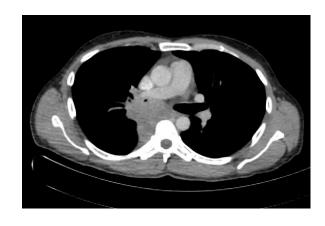

| _                                   |                                | CTCAE           | Scale             |             |           |        |                       |       |
|-------------------------------------|--------------------------------|-----------------|-------------------|-------------|-----------|--------|-----------------------|-------|
| Factors impacting RIP  Age > 65 yrs | PFT                            | Cutoff<br>point | No<br>Pneumonitis | Pneumonitis | HR        | 95% CI | P<br>value            |       |
|                                     | Lung Doses (MLD>20Gy, V20>35%) | FEV1            | <b>1</b> .9       | 2 (9.1%)    | 7 (46.7%) | 3.21   | 0.93-                 | 0.017 |
|                                     | PFT                            |                 | ≥1.9              | 20 (90.9%)  | 8 (53.3%) |        | 11.16                 |       |
|                                     | Smoking<br>Taxanes CT          | FeNO            | <b>17.5</b>       | 13 (59.1%)  | 3 (20%)   | 1.90   | 1.10-<br>3.28         | 0.041 |
| Trea                                | atment - Short course steroids | 01.60           | ≥17.5             | 9 (40.9%)   | 12 (80%)  |        |                       |       |
|                                     |                                | DLCO            | *18.9             | 7 (31.2%)   | 12 (80%)  | 2.26   | 1.21 <b>–</b><br>4.22 | 0.007 |
|                                     |                                |                 | ≥18.9             | 15 (68.2%)  | 3 (20%)   |        |                       |       |



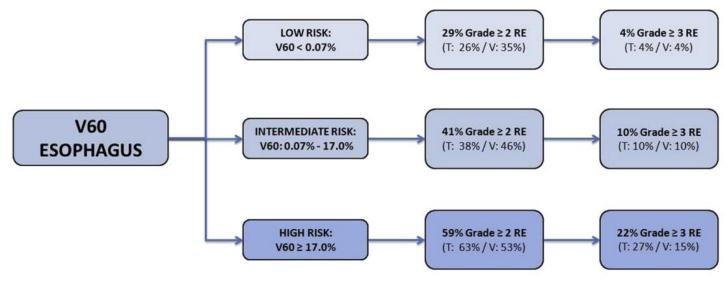


#### Risk stratification for RP




| V20 Gy    | Symptomatic pneumonitis (≥ Gr 2) | Fatal<br>Pneumonitis |
|-----------|----------------------------------|----------------------|
| <20%      | 18.4%                            | 0.0%                 |
| 20-29.99% | 30.3%                            | 1.0%                 |
| 30-39.99% | 32.6%                            | 2.9%                 |
| ≥ 40%     | 35.9%                            | 3.5%                 |






## **Predictors of Esophagitis**

- Usually starts from 4-5<sup>th</sup> week
- Etoposide
- V60
- SUVpeak



Predicting Esophagitis After Chemoradiation Therapy for Non-Small Cell Lung Cancer: An Individual Patient Data Meta-Analysis







#### PORT in LALC

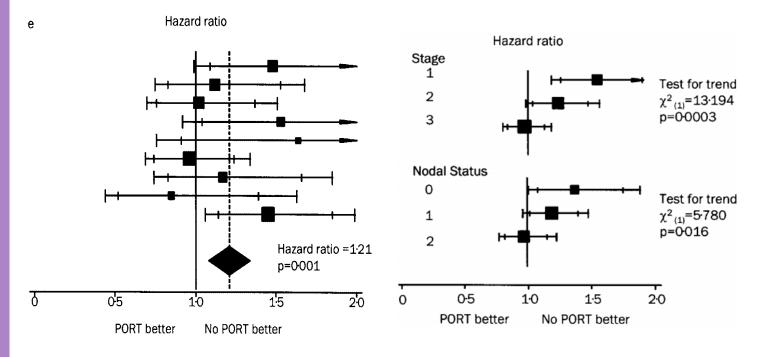
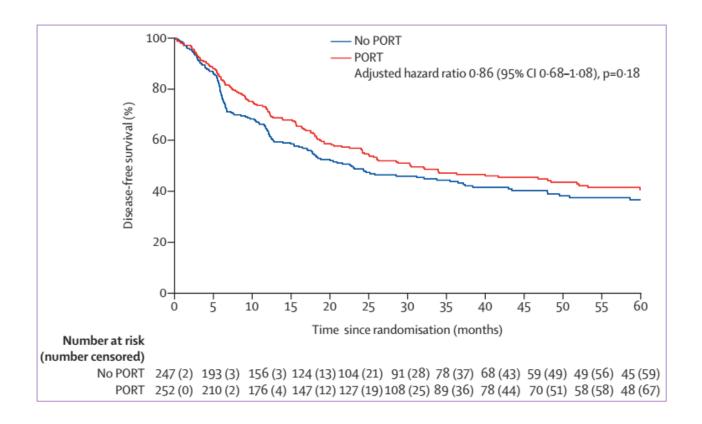



Table 3. ANITA trial results: Percentage of patients with 5-year survival, according to treatment received by nodal status

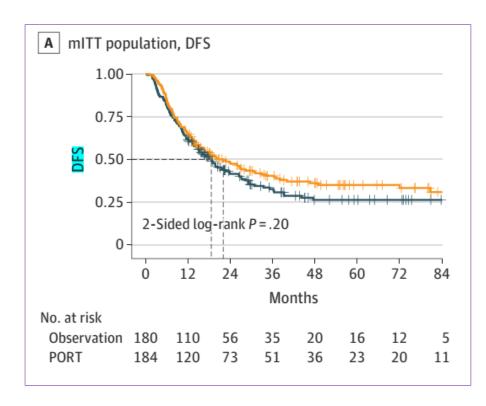
| Treatment group          | pN0  | pN1  | pN2  |
|--------------------------|------|------|------|
| Observation (%)          | 62.3 | 31.4 | 16.6 |
| Observation + PORT (%)   | 43.8 | 42.6 | 21.3 |
| Chemotherapy* (%)        | 59.7 | 56.3 | 34.0 |
| Chemotherapy* + PORT (%) | 44.4 | 40.0 | 47.4 |

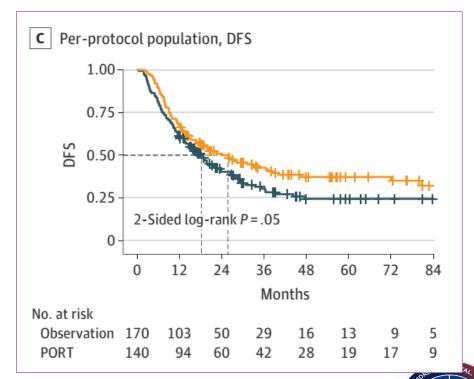

Douillard et al. IJROBP.2008;72:695-701








Postoperative radiotherapy versus no postoperative radiotherapy in patients with completely resected non-small-cell lung cancer and proven mediastinal N2 involvement (Lung ART): an open-label, randomised, phase 3 trial








# Effect of Postoperative Radiotherapy for Patients With pIIIA-N2 Non-Small Cell Lung Cancer After Complete Resection and Adjuvant Chemotherapy The Phase 3 PORT-C Randomized Clinical Trial







## Take Home Message

- Radiation therapy is the standard treatment for LALC
- Patient selection is very crucial
- Concurrent chemotherapy improves OS
- Radiation volume and Planning utmost consideration
- Immunotherapy with CTRT Promising results







## THANK YOU



Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage III non-small-cell lung cancer Thomas et al 2008

| Histopathological response in patients with complete resection* (n=182), n (%) |         |         |  |
|--------------------------------------------------------------------------------|---------|---------|--|
| >90%                                                                           | 59 (60) | 17 (20) |  |
| <90%                                                                           | 30 (31) | 60 (71) |  |
| Unknown or not done                                                            | 9 (9)   | 7 (8)   |  |



